On minimal geodetic domination in graphs
نویسندگان
چکیده
Let G be a connected graph. For two vertices u and v in G, a u–v geodesic is any shortest path joining u and v. The closed geodetic interval IG[u, v] consists of all vertices of G lying on any u–v geodesic. For S ⊆ V (G), S is a geodetic set in G if ⋃ u,v∈S IG[u, v] = V (G). Vertices u and v of G are neighbors if u and v are adjacent. The closed neighborhood NG[v] of vertex v consists of v and all neighbors of v. For S ⊆ V (G), S is a dominating set in G if ⋃ u∈S NG[u] = V (G). A geodetic dominating set in G is any geodetic set in G which is at the same time a dominating set in G. A geodetic dominating set in G is a minimal geodetic dominating set if it does not have a proper subset which is itself a geodetic dominating set in G. The maximum cardinality of a minimal geodetic dominating set in G is the upper geodetic domination number of G. This paper initiates the study of minimal geodetic dominating sets and upper geodetic domination numbers of connected graphs.
منابع مشابه
On the edge geodetic and edge geodetic domination numbers of a graph
In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...
متن کاملThe Geodetic Domination Number for the Product of Graphs
A subset S of vertices in a graph G is called a geodetic set if every vertex not in S lies on a shortest path between two vertices from S. A subset D of vertices in G is called dominating set if every vertex not in D has at least one neighbor in D. A geodetic dominating set S is both a geodetic and a dominating set. The geodetic (domination, geodetic domination) number g(G)(γ(G), γg(G)) of G is...
متن کاملGeodetic Domination in Graphs
A subset S of vertices in a graph G is a called a geodetic dominating set if S is both a geodetic set and a (standard) dominating set. In this paper, we study geodetic domination on graphs.
متن کاملDistinct edge geodetic decomposition in graphs
Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...
متن کاملOn the super domination number of graphs
The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 35 شماره
صفحات -
تاریخ انتشار 2015